## Nazeer Syed, personal profile



**Director Business Development** 

Strategic Segments -Asia Pacific and India Region.

25 years drives experience with Danfoss.

More than 33 years Sales Development & Management exp in Power systems, Electrical, process field instruments.

B.E., (Electronics). MBA (Strategic Management) .

Smart grids and energy storage,

Power-to-X,

DC-Grid, Marine Solutions,

High Power LV/MV Drives, and product management.



# Welcome to Danfoss



## Danfoss at a glance

**Businesses** 



Power Solutions

Drives

Climate Solutions

#### **Global organization**

100

countries

**42,000** employees

97 factories

**10.3bn €** 

2022 revenue

Serving industries Marine Mobile Commercial Refrigeration & offshore **Automotive hydraulics** & A/C buildings District Food Heavy Residental Water & wastewater buildings energy & beverage industry

3 | Danfoss Drives | AR463136296273en-000102





## Our world



Construction

Industry



**Residential Heating** 

Cooling



Industry

Brewery



Automotive

Ξ

HVAC

ENGINEERING TOMORROW





4 | Danfoss Drives | AR463136296273en-000102

**On-Highway** 

#### Agriculture



**Classified as Business** 

**District Heating** 



We're starting at home

# Danfoss Nordborg campus became CO<sub>2</sub> neutral in 2022

Danfoss targets are approved by the "Science-based Targets" initiative:

Scope 1 & 2 goal: CO<sub>2</sub> neutrality in all facilities globally, by 2030

Scope 3 goal: 15 % emission reduction in 2030

2022



### **Danfoss Power Electronics and Drives** introduction





### Danfoss Drives Breadth and Depth





# **DrivePro®** Lifecycle Services











DrivePro<sup>®</sup> Exchange



DrivePro<sup>®</sup> Start-up

**DrivePro® Extended** Warranty

**DrivePro® Spare Parts** 



**DrivePro® Preventive** <u>Maintenance</u>



DrivePro® Remote Monitoring



DrivePro Remo Expert Suppor mote



DrivePro<sup>®</sup> Retrofit





**DrivePro**®

## Power conversion will be needed even more

#### World final energy demand by carrier



Units: EJ/yr

Source : DNV-GL Energy Transition Outlook







#### **Renewable Smoothening**

- BESS is required to mitigate the intermittent fluctuations of Solar power generation due to cloud intermittency by smoothen Solar PV output power to grid.
- The BESS shall absorb short term power variations in Solar PV plant output by fast charging or discharging the battery and generate a smoother generation curve that can be absorbed in the grid in an easier way.



- For energy time shift application the BESS shall time-shift the excess Solar PV plant output power and make it available to gird when needed.
- BESS shall automatically charge the battery with power from solar PV plant during solar generation hours and discharge the battery by supplying power to grid during peak load periods or as per grid operator requirement.







### Energy Storage Typical use cases

## ENERGY STORAGE

Time shift of production
Peak load shaving for incoming power
Back-up power or black-out start





#### **Application:**

- Frequency response
- Backup Power
- Synthetic Inertia
- Lower c-rates (more stored energy)
- BESS for Mobile applications targeting low/zero emissions
- & to replace DG with BESS & PV
- Solutions for datacenters, DC Power Distribution



#### Danfoss

### Time-shifting renewables



#### Storage capacity

#### Classified as Business 🖕 🏦 🥫 🛱 🛱 🛱 🛱 🖓 < 🚖

|                                   |                                                                                |                 |                                                         |             |                                                                                                                                     |                                                                               | According to Niti Aayog, India's renewable<br>energy (RE) capacity is expected to reach 174                     |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------|-----------------|---------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                   | Applications                                                                   | ed Energy Stora | age Roadmap<br>Energy Ste                               | orage (GWh) | GW by 2023, accounting for 37% of the total<br>power generation. To ensure reliable<br>integration of renewables, the country needs |                                                                               |                                                                                                                 |  |  |  |  |
|                                   | 2019-2022                                                                      |                 | 2019-2022     2022-2027     2027-2032     Total by 2032 |             |                                                                                                                                     |                                                                               | 38 GW of battery energy storage systems<br>(BESS) with a capacity of 150 GWh.                                   |  |  |  |  |
|                                   | Grid Support                                                                   | MV/LV           | 10                                                      | 24          | 33                                                                                                                                  | 67                                                                            | FTM BESS market size in India is                                                                                |  |  |  |  |
| Stationary Storage                |                                                                                | EHV             | 7                                                       | 38          | 97                                                                                                                                  | 142                                                                           | expected to reach <b>41.65 GW</b> by 2030, with a storage capacity of <b>208.25 GWh</b>                         |  |  |  |  |
|                                   | Telecom Towers                                                                 |                 | 25                                                      | 51          | 78                                                                                                                                  | 154                                                                           |                                                                                                                 |  |  |  |  |
|                                   | Data Centres, UPS and inverters                                                |                 | 80                                                      | 160         | 234                                                                                                                                 | 474                                                                           | BTM BESS market size in India is                                                                                |  |  |  |  |
|                                   | Miscellaneous Applications (Railways, rural electrification, HVAC application) |                 | 16                                                      | 45          | 90                                                                                                                                  | 151                                                                           | with a storage capacity of 66.75 GWh<br>Dominated by                                                            |  |  |  |  |
|                                   | DG Usage Minimization                                                          |                 | -                                                       | 4           | 11                                                                                                                                  | 14                                                                            | Indian cities where the pollution levels are dangerously high are also likely to ban the usage of DG sets soon. |  |  |  |  |
|                                   | Total Stationary (GWh)                                                         |                 | 138                                                     | 322         | 543                                                                                                                                 | 1,002                                                                         |                                                                                                                 |  |  |  |  |
| Electric vehicles                 | E2W                                                                            |                 | 4                                                       | 51          | 441                                                                                                                                 | 496                                                                           | A report in 2018 by public policy consultancy<br>Chase-India estimated the installed capacity                   |  |  |  |  |
|                                   | E3W                                                                            | 26              | 43                                                      | 67          | 136                                                                                                                                 | of DG sets at 2042 MW in NCR cities –<br>Gurugram (1623 MW) Faridabad (74 MW) |                                                                                                                 |  |  |  |  |
|                                   | E4W                                                                            | 8               | 102                                                     | 615         | 725                                                                                                                                 | Noida (294 MW), Ghaziabad (51 MW). Which                                      |                                                                                                                 |  |  |  |  |
|                                   | Electric Bus                                                                   | 2               | 11                                                      | 44          | 57                                                                                                                                  | By some estimates there are over 70GW                                         |                                                                                                                 |  |  |  |  |
|                                   | Total Electric Vehicles (GWh)                                                  | 40              | 207                                                     | 1,167       | 1,414                                                                                                                               | (100kw to 1000kW)of large DG sets in India.                                   |                                                                                                                 |  |  |  |  |
| fotal Energy Storage Demand (GWh) |                                                                                |                 | 178                                                     | 529         | 1710                                                                                                                                | 2416                                                                          |                                                                                                                 |  |  |  |  |



# **Electrification** introduction

Danfoss



# **Power Conversion Building Blocks** with ready application adaptation & onshore & offshore , Air & Liquid cooled, Wide voltage & Power range coverage





- Energy Storage on Grid , Offgrid , Peak shaving, Time Shifting, Grid stabilisation
- Power Generation
- Shore Supply
- EV Fast Charging of Onroad, Offroad electric vehicles e.g. Busses, Trucks Construction machines, port cranes, mining vehicles, Electric vessels, TugBoats,
- Grid Forming / Island operation
- Grid Synchronisation
- Frequency Reserve
- Black Start
- Green Hydrogen @P2X.





- Power Generation (Hydro, Tidal, turbines)
- Hybrid applications with dual mode Motor or generator



- Direct to DC , Integrated Energy Storage in industrial applications.
- Fast Charging
- MPPT (Maximum Power Tracking)
- Green Hydrogen @P2X.



- DC Distribution in Marine Vessels
- DC Industry /Datacenters
- DC Grids /DC Power Distribution





- Grid Converter
  - AFE
  - MicroGrid
  - Island
  - DC-DC Converter

٠





#### DrivePro<sup>®</sup> LifeCycle Services

## What **Danfoss** offers



#### Full scale products



Dedicated application software



Wide range of certified grid code compliance



Safety certifications



Converter simulation model, Dimensioning & selectivity

Comprehensive supporting documentation



### Power conversion is common for all AC Grid





### Power conversion is common for all DC Grid







### **Electrification Focus Areas in Danfoss Drives**



**POWER 2X** 

Enabling production of hydrogen to be utilized as 'green fuel'



Shore Supply And Offshore Electrification

Hybrid and full electric solutions

**FAST CHARGING** 

Heavy Duty fast and ultra-fast charging



#### **ENERGY STORAGE**

Common enabler across onshore and offshore









### **Dedicated smart grid** application software

#### Integrated smart grid software provides



#### Power quality

- Harmonics / Interharmonics / Flicker
- Switching operations

### X

- Static grid support
  - Frequency and active power control
  - Voltage and reactive power control

#### Dynamic grid support

- Low-voltage ride through (LVRT)
- High-voltage ride through (HVRT)



Grid code compliance



Immediate disconnection when unexpected islanding mode is detected

Robustness against load unbalances and grid disturbances

#### High configuration versatility

21 |Danfoss Drives – Electrification Through Power Conversion





## **Grid Converter (PCS)**

Topology with Grid Converter : Normal charging output range from  $600V_{DC} - 800V_{DC}$  or  $800V_{DC} - 1100V_{DC}$  Bi-directionality available , Wide range of different power units available.





## Grid code and safety certifications

#### **Grid Codes**

- IEC 62116:2014
- ENTSO-e (2016/631/EU)
- BDEW
- VDE-4110/4120
- AS4777.2:2015 Air cooled units
- IEEE 1547 (600VAC)
- Hawaii rule 14H
- California rule 21
- Thailand PEA 2013

#### **Safety Regulation**

- UL1741 (600VAC)
- IEC 62109-1 & IEC 62109-2 Air cooled units





### DC/DC Converter application

DC to DC power conversion for energy storage and power supply applications



### Bi-directional DC/DC power conversion Key takeaways

- Freedom to connect any energy source or storage at any voltage to a stable DC-bus voltage
- Create a robust and accurate high-power DC-power supply
- Ideal solution for megawattscale charging applications
- DC/DC with integrated MPPT



Energy storage & DC-power supply



Back-up power



Time shifting



Peak shaving





### Use Case : Virtual power line "RINGO Project"



The ENGIE via SCLE-SFE Ringo project is part of the French utility RTE's initiative to create a "virtual power line" that came online in 2020 for a test period of three years, with the possibility of an extension.

The project uses energy storage systems to alleviate congestion on the power grid without constructing additional power lines.

The battery storage systems are strategically placed where the lines are congested and absorb large amounts of fluctuating renewable energy resources. The battery capacity at each site is 12 MW / 24 MWh.

ENGIE's INEO SCLE SFE has been involved in designing, delivering, and maintaining storage systems since 2009 and has developed its own versatile Energy Management System.

The company applies proprietary technology resulting from 14 years of R&D to storage system and micro-grid projects across 23 countries.



# Hospital St Damien, Haiti

### **Diesel-PV-battery** hybrid system



**Reduced** electricity cost and less down time.



**Increased** power supply reliability.



Improved air quality.







# **Solar PV farm:** Electric vehicle rapid charging

## PV-battery hybrid systems



**Flexibility** in variable price rates.



**Increased** power supply reliability and peak loads decreased.



17680781

More sustainable charging station.



. .





# Supplying water

### **PUMPS Supplying** of the water pump 90

**Supplying** of the water pump 90 kW up to 1 min. in case of main grid failure.

**Stopping** the pump even for seconds **causes**:



process disturbance



cleaning of the water supply system



losses of several thousands of Euros per failure







GROUP SERVICES

#### **Facts behind**

- Volkswagen Group Services GmbH is a subsidary of Volkswagen AG
- Electrification / 2<sup>nd</sup> Life BESS
  - VACON NX
  - SISO-LCL-Filter



The second

Batter

ENERGY STORAGE



11MW battery storage project:

Together by two technology partners Mercedes Benz Energy and Loccioni.

The aim is to help Mercedes Benz Energy to scale their battery storage business, Mercedes is using our FI10 NX Grid Converter with SISO technology.

The 11MW BESS / Storage is a great project with two business cases 1. FFR (fast frequency response)

2. Optimization of the base load of the neighboring 800 MW gas power plant





# **POWER CONVERSION SYSTEM:**



#### SIMPLIFIED PCS SINGLE-LINE DIAGRAM FOR A SINGLE FLYWHEEL MOTOR/GENERATOR



## Typical BESS for Behind the Meter



# IC7 Hybrid

| Clim and lightweight                                 |                                 | Non-regenerative Front End          |        |          |         | d    | Active Front End                 |                              |        |              |      |        |      |      |  |  |  |  |  |  |
|------------------------------------------------------|---------------------------------|-------------------------------------|--------|----------|---------|------|----------------------------------|------------------------------|--------|--------------|------|--------|------|------|--|--|--|--|--|--|
| optimized for ease of<br>integration and flexibility | Size                            | NR11                                | 2 x NR | R11      | 3 x NR1 | 1    | AM10                             | A                            | 411    | 2 x AM:      | 10 2 | x AM11 | З х  | AM11 |  |  |  |  |  |  |
|                                                      | Nominal DC power<br>[kW] @480 V | 812                                 | 155    | 0        | 2321    |      | 378                              | 5                            | 96     | 758          |      | 1190   | 1    | 785  |  |  |  |  |  |  |
| <mark>2∼4</mark><br>iC7<br>iC7<br>iC7<br>iC7<br>iC7  | Nominal DC power<br>[kW] @400 V | 676                                 | 128    | 8        | 1932    |      | 338                              | 5                            | 37     | 676          |      | 1074   | 1    | 611  |  |  |  |  |  |  |
|                                                      | Voltage rating                  | Voltage rating                      |        |          |         |      |                                  | 3x 380-500 V AC, 460-800V DC |        |              |      |        |      |      |  |  |  |  |  |  |
|                                                      | Overload                        |                                     |        |          |         |      | 110%/150%, 1 min per 5 min cycle |                              |        |              |      |        |      |      |  |  |  |  |  |  |
| · · ·                                                | Rated temperature               |                                     |        |          |         |      | -15 to 40 °C/5 to 104 °F         |                              |        |              |      |        |      |      |  |  |  |  |  |  |
|                                                      | Maximum temperatu               | Maximum temperature (with derating) |        |          |         |      |                                  |                              |        | 55 °C/131 °F |      |        |      |      |  |  |  |  |  |  |
|                                                      | Environmental                   | Environmental                       |        |          |         |      |                                  |                              |        |              | 3C3  |        |      |      |  |  |  |  |  |  |
|                                                      |                                 |                                     | Enclos | ure size | AM10    | AM11 | NM11                             | LCL                          | Enclos | sure size    | AM10 | AM11   | NM11 | LCL  |  |  |  |  |  |  |
|                                                      | 90% of losses to                |                                     |        | Width    | 170     | 210  | 235                              | 235                          |        | Width        | 6.7  | 8.3    | 9.3  | 9.3  |  |  |  |  |  |  |
|                                                      | the cooling                     |                                     | [mm]   | Height   | 990     | 990  | 921                              | 1502                         | [in]   | Height       | 40   | 40     | 26.3 | 59.1 |  |  |  |  |  |  |
| Cooling air intake from front                        | Channel                         |                                     |        | Depth    | 502     | 502  | 502                              | 502                          |        | Depth        | 19.8 | 19.8   | 19.8 | 19.8 |  |  |  |  |  |  |
| or from bottom for channel<br>cooling (outside air)  |                                 |                                     |        |          |         |      |                                  |                              |        |              |      |        |      |      |  |  |  |  |  |  |

**33** [Electrification Through Power Conversion



### **Grid** friendliness

<3%

total harmonic distortion





- Typically, less than 3% total harmonic distortion of the grid (THiD)
- >98% efficiency for any electrolyzer load conditions from beginning–of-life to end-of-life of the electrolyzer
- Clean DC voltage with low ripple ensures high electrolyzer efficiency

34 |Electrification Through Power Conversion





### **Power conversion for PtX plant**

The Danfoss Drives Grid Converter and LCL filter are equipped with a segregated IP54 cooling channel ensuring that approximately 90% of the heat is led outside the container. The remaining approximately 10% of the losses inside the container can be freely ventilated with direct outdoor air as the power modules are 3C3 rated.



90% of heat losses led outside the container









Paralleling Grid Converters

hands:

Flexible paralleling options

Unlimited number of Grid Converters can be paralleled

2. Up to 16 power units can be

Choice of paralleling topology is in your

independently with full redundancy

paralleled using single control unit

which simplifies upper level control

Valid against main

competitors

# Market exclusive independent paralleling

#### Unmatched redundancy without communication between the units

#### **Benefits**

- Independent & fully redundant converters ensure availability
- Enables long distance AC- and DC-buses between port and starboard
- Reduced wiring in Grid Converters





...more flexible vessel & power system design



...reduced cost of redundant system



#### iC7 makes a difference with

- Paralleling without communication between units
- Fast control loops



 Intelligence with new sensors

# Reduce other equipment needed

#### Grid Converter can cover more functionality without additional equipment

#### **Benefits**

- Synchronization relay is not needed when connecting two grids together
- Grid Converter voltage measurement option can be used for voltage compensation instead of external components and reference
- Grid data can be monitored with iC7





Shore Shi

# What **Danfoss** India offers





**Classified as Business** 

ENGINEERING TOMORROW



### **1.12 MW Solar Power Generation**





### Grid-Diesel-PV-Battery (250Kw/270KWh) hybrid system- Danfoss INDIA -2022

Dantos

Danfoss, Chennai INDIA

Utilize solar energy

- Build PV Battery hybrid system
- Backup power supply

- Reduced electricity cost / Time shift
- Less down time
- Increased power supply reliability
- Improved air quality

Use case

Needs

enefits

Party I





#### Line diagram



Galvanic Isolation cum voltage matchin transformer 260kVA,415V/460V

Grid convertor NXA 0325 6 +LCL 0325 6

EMS with PLC & HMI

Battery & BMS 274kWH,900V Nominal



41 | India Region - Update

**Classified as Business** 

ENGINEERING TOMORROW



### **Q&A** Session



## ENGINEERING TOMORROW